直径通常用字母“d”(diameter)表示。
直径,是指通过一平面图形或立体(如圆、圆锥截面、球、立方体)中心到边上两点间的距离。连接圆周上两点并通过圆心的直线称圆直径,连接球面上两点并通过球心的直线称球直径。
同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。
扩展资料:
一、相关性质
1、性质一
在同一个圆中直径的长度是半径的2倍,可以表示d=2r或r=d/2。
证明:设有直径AB,根据直径的定义,圆心O在AB上。∵AO=BO=r,∴AB=2r
并且,在同一个圆中弦长为半径2倍的弦都是直径。即若线段d=2r(r是半径长度),那么d是直径。
反证法:假设AB不是直径,那么过点O作直径AB',根据上面的结论有AB'=2r=AB
∴∠ABB'=∠AB'B(等边对等角)
又∵AB'是直径,∴∠ABB'=90°(直径所对的圆周角是直角)
那么△ABB‘中就有两个直角,与内角和定理矛盾
∴假设不成立,AB是直径
2、性质二
在同一个圆中直径是最长的弦。
证明:设AB是⊙O的直径,CD是非直径的任意一条弦,则可证明AB>CD恒成立。
连接OC、OD,根据圆的定义,OA=OB=OC=OD=半径
∵CD不是直径
∴CD不经过圆心O,即O、C、D三点可以构成三角形
在△OCD中,根据三角形三边关系可知OC+OD>CD
∵OA=OB=OC=OD
∴OA+OB>CD
即AB>CD
二、表示方式
圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母);圆心—O;弧—⌒;直径—d ;扇形弧长—L ; 周长—C ; 面积—S。
参考资料来源:百度百科-直径
参考资料来源:百度百科-圆