直径,是指通过一平面图形或立体(如圆、圆锥截面、球、立方体)中心到边上两点间的距离,通常用字母“d”表示。连接圆周上两点并通过圆心的线段称圆直径,连接球面上两点并通过球心的直线称球直径。
直径的两个端点在圆上,圆心是直径的中点。直径将圆分为面积相等的两部分,中间的线段就叫直径(每一个部分成为一个半圆)。
扩展资料
在同一个圆中直径的长度是半径的2倍,可以表示d=2r或r=d/2。
证明:设有直径AB,根据直径的定义,圆心O在AB上。∵AO=BO=r,∴AB=2r
并且,在同一个圆中弦长为半径2倍的弦都是直径。即若线段d=2r(r是半径长度),那么d是直径。
反证法:假设AB不是直径,那么过点O作直径AB',根据上面的结论有AB'=2r=AB
∴∠ABB'=∠AB'B(等边对等角)
又∵AB'是直径,∴∠ABB'=90°(直径所对的圆周角是直角)
那么△ABB‘中就有两个直角,与内角和定理矛盾
∴假设不成立,AB是直径