这是最早用于性病诊断的重组DNA技术。基本原理是具有一定同源性的两条核酸单链在一定条件下(适宜的温度及离子强度等)可按碱基互补原则形成双链,此杂交过程是高度特异的。杂交的双方是待测核酸及探针。待测核酸序列为性病病原体基因组或质粒DNA。探针以放射核素或非放射性核素标记,以利于杂交信号的检测。
所谓杂交(hydridization)指两个以上的分子因具有相近的化学结构和性质而在适宜的条件下形成杂交体(hybrid),杂交体中的分子不是来自一个二聚体分子。同一个二聚体中的两个分子在变性解离后重组合称为复性。利用两条不同来源的多核苷酸链之间的互补性而使它们形成杂交体双链叫核酸杂交。与核酸杂交技术相对应的另一项技术被称为探针技术,它是指利用标记分子对其它分子的识别性而实现对后者进行检测的一种技术,我们把标记的分子叫探针(Probe)。将探针技术与分子杂交技术相结合,从而使分子杂交技术得以广泛推广应用。目前所用的核酸杂交技术均应用了标记技术。
(一)DNA的变性
DNA变性是指双螺旋之间氢键断裂,双螺旋解开,形成无规则线团,称为DNA变性。加热、改变DNA溶液中的pH,或有机溶剂等理化因素的影响,均可使DNA变性。变性的DNA粘度下降,沉降速度增加,浮力上升,紫外吸收增加。
(二)DNA复性
变性DNA只要消除变性条件,二条互补链还可以重新结合,恢复原来的双螺旋结构,这一过程称为复性。复性后的DNA,理化性质都能得到恢复。
核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价健的形成即出现稳定的双链区,这是核酸分子杂交的基础。杂交分子的形成并不要求两条单链的碱基顺序完全互补,所以不同来源的核酸单链只要彼此之间有一定程度的互补顺序就可以形成杂交双链。分子杂交可在DNA与DNA、RNA与RNA或RNA与DNA的二条单链之间,由于DNA一般都以双链形式存在,因此在进行分子杂交时,应先将双链DNA分子解聚成为单链,这一过程称为变性,一般通过加热或提高pH值来实现。使单链聚合成双链过程称为退火或复性。用分子杂交进行定性或定量分析的最有效方法是将一种核酸单链用同位素标记成为探针,再与另一种核酸单链进行分子杂交。
(三)探针——靶分子反应
从化学和生物学意义上理解,探针是一种分子,它带有供反应后检测的合适标记物,并与特异靶分子反应。抗体——抗体、外源凝集素——碳水化合物、亲合素——生物素、受体——配基(Ligand)以及互补核酸间的杂交均属于探针——靶分子反应,蛋白质探针(如抗体)与特异靶分子是通过混合力(疏水离子和氢键)的作用在少数特异位点上的结合,而核酸探针与互补链的反应则是根据杂交体的长短不同,通过氢键几十、几百甚至上千个位点上的结合。这就决定它的特异性。
基因探针根据标记方法不同可粗分为放射性探针和非放射性探针两大类,根据探针的核酸性质不同又可分为DNA探针、RNA探针、cDNA探针、cRNA探针及寡核苷酸探针等几类。DNA探针还有单链和双链之分。下面分别介绍这几种探针。
一、核酸探针的种类
(一)DNA探针
DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获的DNA探针种类很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针,这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类ALU探针,这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,目前分子杂交技术用于细菌的分类和菌种鉴定比用G+C百分比值要准确的多,是细菌分类学的一个发展方向,加之分子杂交技术的高度敏感性,分子杂交在临床性病病原体诊断上具有广泛的前景。
DNA探针(包括cDNA探针)有三大优点:第一,这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备方法简便。其次,DNA探针不易降解(相对RNA而言),一般能有效抑制DNA酶活性。第三,DNA探针的标记方法较成熟,有多种方法可供选择,如缺口平移法、随机引物法、PCR标记法等,能用于同位素和非同位素标记。
(二)cDNA探针
cDNA是指互补于mRNA的DNA分子(complementary DNA)。cDNA是由RNA经一种称为逆转录酶的DNA聚合酶催化产生的。携带逆转录酶的病毒侵入宿主细胞后,病毒RNA在逆转录酶的催化下转化成双链cDNA,并进而整合入宿主细胞染色体DNA分子,随宿主细胞DNA复制同时复制,这种整合的病毒基因组称为原病毒。在静止状态下,可被复制多代,但不被表达,故无毒性,一旦因某种因素刺激而被活化,则该病毒大量复制。如其带有癌基因,还可能诱发细胞癌变。
逆转录现在已成为一项重要的分子生物学技术,广泛用于基因的克隆和表达。从逆转录病毒中提取的逆转录酶也已商品化。最常用的有AMV逆转录酶。利用真核mRNA3′末端存在一段聚腺苷酸尾,可以合成一段寡聚胸苷酸用作引物,在逆转录酶催化下合成互补于mRNA的cDNA链,然后再用RNase H将mRNA消化掉,再加入大肠杆菌DNA聚合酶I催化合成另一条DNA链,即完成了从mRNA到双链DNA的逆转录过程。
所得到的双链cDNA分子经S1核酸酶切平两端后接一个有限制酶切点的接头(Adapter),再经特定限制酶消化产生粘性末端,即可与含互补末端的载体进行连接。常用的克隆载体是λ噬菌体DNA,如λgt、EMBL和Charon 系列等。用这类载体可以得到包含105以上转化子文库,再经前面介绍的筛选方法筛选特定基因克隆。用这种技术获得的DNA探针不含有内含子序列。因此尤其适用于基因表达的检测。